Bifurcation analysis of an SIR model considering hospital resources and vaccination
Jiajia Zhang and
Yuanhua Qiao
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 208, issue C, 157-185
Abstract:
In this paper, an SIR epidemic model considering hospital resources and vaccination is established and the rich dynamics and complex bifurcations are investigated. Firstly, the existence of disease-free equilibrium and endemic equilibria is explored. It is founded that when the vaccination rate is not high, the number of endemic equilibrium points changed easily with the number of hospital resources and vaccination, resulting in transcritical bifurcation and saddle–node bifurcations. Secondly, different types singularities such as degenerate saddle–node of codimension 1 at the disease-free equilibrium, and cusp or focus type Bogdanov–Takens singularities of codimension 3 at endemic equilibria are presented. Thirdly, bifurcation analysis at these equilibria is investigated, and it is found that the system undergoes a sequence of bifurcations, including Hopf, degenerate Hopf bifurcation, homoclinic bifurcation, the cusp type Bogdanov–Takens bifurcation of codimension 2, and the focus type Bogdanov–Takens bifurcation of codimension 3 which are the organizing centers for a series of bifurcations with lower codimension. And the system shows very rich dynamics such as the existence of multiple coexistent periodic orbits, homoclinic loops. Finally, numerical simulations are presented to verify the theoretical results.
Keywords: SIR epidemic model; Transcritical bifurcation; Saddle–node bifurcation; Degenerate Hopf bifurcation; Bogdanov–Takens bifurcation (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847542300037X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:208:y:2023:i:c:p:157-185
DOI: 10.1016/j.matcom.2023.01.023
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().