EconPapers    
Economics at your fingertips  
 

The tensor-train mimetic finite difference method for three-dimensional Maxwell’s wave propagation equations

G. Manzini, P.M.D. Truong, R. Vuchkov and B. Alexandrov

Mathematics and Computers in Simulation (MATCOM), 2023, vol. 210, issue C, 615-639

Abstract: Coupling the mimetic finite difference method with the tensor-train format results in a very effective method for low-rank numerical approximations of the solutions of the time-dependent Maxwell wave propagation equations in three dimensions. To this end, we discretize the curl operators on the primal/dual tensor product grid complex and we couple the space discretization with a staggered-in-time second-order accurate time-marching scheme. The resulting solver is accurate to the second order in time and space, and still compatible, so that the approximation of the magnetic flux field has zero discrete divergence with a discrepancy close to the machine precision level. Our approach is not limited to the second-order of accuracy. We can devise higher-order formulations in space through suitable extensions of the tensor-train stencil to compute the derivatives of the mimetic differential operators. Employing the tensor-train format improves the solver performance by orders of magnitude in terms of CPU time and memory storage. A final set of numerical experiments confirms this expectation.

Keywords: Tensor-train format; Mimetic calculus; Maxwell’s equations; Partial differential equations (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423001313
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:210:y:2023:i:c:p:615-639

DOI: 10.1016/j.matcom.2023.03.026

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:210:y:2023:i:c:p:615-639