On the convergence order of a binary tree approximation of symmetrized diffusion processes
Jiro Akahori,
Jie Yen Fan and
Yuri Imamura
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 211, issue C, 263-277
Abstract:
The price of a barrier option is often computed numerically. Due to the path dependency, the convergence rate of such numerical approximation is generally of order 1/2. In this paper, we show that the convergence order can be achieved at 1 under certain condition. This confirms a numerical analysis done previously by the third author with others.
Keywords: Barrier option; Numerical analysis; Convergence order; Symmetrized diffusion; Markov chain; Brownian motion (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423001350
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:211:y:2023:i:c:p:263-277
DOI: 10.1016/j.matcom.2023.03.030
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().