New characterizations of the (discrete) Lindley distribution and their applications
Shaochen Wang and
Christian H. Weiß
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 212, issue C, 310-322
Abstract:
A Stein-type characterization of the Lindley distribution is derived. It is shown that if using the generalized derivative in the sense of distributions, one can choose all indicator functions as the characterization functions class. This extends some known recent results about characterizations of the Lindley distribution. In addition, a new characterization based on another independent exponential random variable is also provided. As an application of the novel results, some moment formulas related to the Lindley distribution are obtained. Furthermore, generalized method-of-moments estimators for both the discrete and continuous Lindley distribution are proposed, which lead to a notably lower bias at the cost of an only modest increase in mean squared error compared to existing estimators. It is also demonstrated how the Stein characterization might be used to construct a goodness-of-fit test with respect to the null hypothesis of the Lindley distribution. The paper concludes with an illustrative real-data example.
Keywords: Lindley distribution; Distributional characterizations; Stein characterizations; Carleman’s condition; Moment estimation; Goodness-of-fit tests (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423002082
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:212:y:2023:i:c:p:310-322
DOI: 10.1016/j.matcom.2023.05.003
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().