EconPapers    
Economics at your fingertips  
 

An efficient numerical method based on Fibonacci polynomials to solve fractional differential equations

Octavian Postavaru

Mathematics and Computers in Simulation (MATCOM), 2023, vol. 212, issue C, 406-422

Abstract: The Fibonacci sequence is significant because of the so-called golden ratio, which describes predictable patterns for everything. Fibonacci polynomials are related to Fibonacci numbers, and in this paper we extend their applicability by using them to solve fractional differential equations (FDEs) and systems of fractional differential equations (SFDEs). With the help of the Riemann–Liouville fractional integral operator for the fractional-order hybrid function of block-pulse functions and the Fibonacci polynomials defined in this paper, the solution of the considered FDE and SFDE is reduced to a system of algebraic equations, which can be solved by Newton’s iterative method. The fractional order is obtained by transforming x into xα, with α>0. Compared to other models, our method in some situations is better by twelve orders of magnitude. There are situations when we get the exact solution. The presented method proves to be simple and effective in solving nonlinear problems with given initial values.

Keywords: Fractional-order; Hybrid functions; Block-pulse; Fibonacci polynomials; Hypergeometric function (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423001969
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:212:y:2023:i:c:p:406-422

DOI: 10.1016/j.matcom.2023.04.028

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:212:y:2023:i:c:p:406-422