EconPapers    
Economics at your fingertips  
 

Dynamic effects of asymptomatic infections on malaria transmission

Leilei Xue, Liping Sun and Songbai Guo

Mathematics and Computers in Simulation (MATCOM), 2023, vol. 214, issue C, 172-182

Abstract: Asymptomatic transmission is a way of spreading malaria from asymptomatic infected individuals to susceptible ones by mosquito bites. Asymptomatic malaria-infected individuals do not show clinical symptoms, but they can still transmit the disease. Motivated by mathematical models with asymptomatic infections, we propose a human–mosquito model for malaria transmission dynamics with asymptomatic infections and standard incidence rates. We calculate the basic reproduction number R0 of the model and then prove that the model exists a unique endemic equilibrium E∗ if and only if R0>1. By the Lyapunov function method, the global stability of equilibria of the model is obtained. It is shown that the disease-free equilibrium E0 is globally asymptotically stable (GAS) if and only if R0≤1, which implies that malaria will be extinct; and the endemic equilibrium E∗ is GAS if and only if R0>1, which suggests that malaria will persist. In addition, the effects of partial malaria-related parameters on the dynamic transmission of malaria are studied and analysed numerically. The results of numerical simulations show that asymptomatic infections can shift the epidemic dynamics of malaria and have a significant influence on the transmission of malaria.

Keywords: Malaria; Basic reproduction number; Standard incidence rates; Asymptomatic infections; Global stability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423002835
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:214:y:2023:i:c:p:172-182

DOI: 10.1016/j.matcom.2023.07.004

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:214:y:2023:i:c:p:172-182