An improved time accurate numerical estimation for singularly perturbed semilinear parabolic differential equations with small space shifts and a large time lag
S. Priyadarshana,
J. Mohapatra and
S.R. Pattanaik
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 214, issue C, 183-203
Abstract:
The objective of this work is to provide a robust numerical scheme for solving a singularly perturbed semilinear parabolic differential–difference equation having both time delay along with spatial delay, and shift parameters. The small delay and shift arguments in spatial direction are treated with Taylor’s approximation. The technique of quasilinearization is used to treat the semilinearity and the temporal direction is handled with the θ-method. To handle the layer behavior caused by the presence of perturbation parameter, the problem is solved using the upwind scheme on two-layer resolving meshes in the spatial direction providing a first-order accurate result for 0.5≤θ≤1. For θ=0.5, we have the second-order accurate Crank–Nicolson scheme in time. In order to have a higher-order accuracy, the Richardson extrapolation technique is applied in the spatial direction, which in turn provides a global second-order accurate result. Thomas algorithm is used to solve the tridiagonal system of equations formed in the fully discrete scheme. The numerical approach presented is shown to be parameter uniform and convergent for 0.5≤θ≤1. Some numerical tests are presented to show the efficacy of the proposed scheme.
Keywords: Singular perturbation; Differential–difference equations; Time lag; Semilinear parabolic problem; Richardson extrapolation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423002896
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:214:y:2023:i:c:p:183-203
DOI: 10.1016/j.matcom.2023.07.009
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().