Localized eigenvectors on metric graphs
H. Kravitz,
M. Brio and
J.-G. Caputo
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 214, issue C, 352-372
Abstract:
We analyze the eigenvectors of the generalized Laplacian for two metric graphs occurring in practical applications. In accordance with random network theory, localization of an eigenvector is rare and the network should be tuned to observe exactly localized eigenvectors. We derive the resonance conditions to obtain localized eigenvectors for various geometric configurations and their combinations to form more complicated resonant structures. These localized eigenvectors suggest new indicators based on the energy density; in contrast to standard criteria, ours provide the number of active edges. We also suggest practical ways to design resonating systems based on metric graphs. Finally, numerical simulations of the time-dependent wave equation on the metric graph show that localized eigenvectors can be excited by a broadband initial condition, even with leaky boundary conditions.
Keywords: Partial differential equations; Metric graphs; Localization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423002914
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:214:y:2023:i:c:p:352-372
DOI: 10.1016/j.matcom.2023.07.011
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().