A finite difference method on quasi-uniform grids for the fractional boundary-layer Blasius flow
Alessandra Jannelli
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 215, issue C, 382-398
Abstract:
In this paper, we propose a fractional formulation, in terms of the Caputo derivative, of the Blasius flow described by a non-linear two-point fractional boundary value problem on a semi-infinite interval. We develop a finite difference method on quasi-uniform grids, based on a suitable modification of the classical L1 approximation formula and show the consistency, the stability and the convergence. The numerical results confirm the theoretical ones. Comparisons with some recently proposed results are carried out to validate the accuracy of the obtained numerical results, and to show the efficiency and the reliability of the proposed numerical method.
Keywords: Fractional Blasius flow; Nonlinear boundary value problems on semi-infinite domain; Caputo derivative; Quasi-uniform grid; Finite difference schemes (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847542300349X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:215:y:2024:i:c:p:382-398
DOI: 10.1016/j.matcom.2023.08.023
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().