Symplectic numerical integration for Hamiltonian stochastic differential equations with multiplicative Lévy noise in the sense of Marcus
Qingyi Zhan,
Jinqiao Duan,
Xiaofan Li and
Yuhong Li
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 215, issue C, 420-439
Abstract:
In this paper, we propose a symplectic numerical integration method for a class of Hamiltonian stochastic differential equations with multiplicative Lévy noise in the sense of Marcus. We first construct a general symplectic Euler scheme for these equations, then we prove its convergence. In addition, we provide realizable numerical implementations for the proposed symplectic Euler scheme in detail. Some numerical experiments are conducted to demonstrate the effectiveness and superiority of the proposed method by the simulations of its orbits, Hamiltonian and convergence order over a long time interval. The results show the applicability of the methods considered.
Keywords: Hamiltonian stochastic differential equations; Marcus integral; Symplectic Euler scheme; Mean-square convergence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423003385
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:215:y:2024:i:c:p:420-439
DOI: 10.1016/j.matcom.2023.08.012
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().