EconPapers    
Economics at your fingertips  
 

A robust higher-order finite difference technique for a time-fractional singularly perturbed problem

Sanjay Ku Sahoo, Vikas Gupta and Shruti Dubey

Mathematics and Computers in Simulation (MATCOM), 2024, vol. 215, issue C, 43-68

Abstract: A higher-order finite difference method is developed to solve the variable coefficients convection–diffusion singularly perturbed problems (SPPs) involving fractional-order time derivative with the order α∈(0,1). The solution to this problem class possesses a typical weak singularity at the initial time t=0 and an exponential boundary layer at the right lateral surface as the perturbation parameter ɛ→0. Alikhanov’s L2−1σ approximation is applied in the temporal direction on a suitable graded mesh, and the spatial variable is discretized on a piecewise uniform Shishkin mesh using a combination of midpoint upwind and central finite difference operators. Stability estimates and the convergence analysis of the fully discrete scheme are provided. It is shown that the fully discrete scheme is uniformly convergent with a rate of O(M−p+N−2(logN)2), where p=min{2,rα}, r is the graded mesh parameter and M,N are the number of mesh points in the time and space direction, respectively. Two numerical examples are taken in counter to confirm the sharpness of the theoretical estimates.

Keywords: Caputo fractional derivative; Singularly perturbed problem; Non-uniform mesh; Finite difference scheme; Stability; Uniform convergence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423003397
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:215:y:2024:i:c:p:43-68

DOI: 10.1016/j.matcom.2023.08.013

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:215:y:2024:i:c:p:43-68