Stochastic Galerkin method and port-Hamiltonian form for linear dynamical systems of second order
Roland Pulch
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 216, issue C, 187-197
Abstract:
We investigate linear dynamical systems of second order. Uncertainty quantification is applied, where physical parameters are substituted by random variables. A stochastic Galerkin method yields a linear dynamical system of second order with high dimensionality. A structure-preserving model order reduction (MOR) produces a small linear dynamical system of second order again. We arrange an associated port-Hamiltonian (pH) formulation of first order for the second-order systems. Each pH system implies a Hamiltonian function describing an internal energy. We examine the properties of the Hamiltonian function for the stochastic Galerkin systems. We show numerical results using a test example, where both the stochastic Galerkin method and structure-preserving MOR are applied.
Keywords: Ordinary differential equation; Port-Hamiltonian system; Hamiltonian function; Stochastic Galerkin method; Model order reduction; Uncertainty quantification (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423003865
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:216:y:2024:i:c:p:187-197
DOI: 10.1016/j.matcom.2023.09.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().