Strong convergence of an explicit numerical approximation for n-dimensional superlinear SDEs with positive solutions
Yongmei Cai,
Qian Guo and
Xuerong Mao
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 216, issue C, 198-212
Abstract:
For a stochastic differential equation (SDE) with a unique positive solution, a rational numerical method is expected to be structure preserving. However, most existing methods are not, as far as we know. Some characteristics of the SDE models including the multi-dimension and super-linearity make it even more challenging. In this work, we fill the gap by proposing an explicit numerical method which is not only structure preserving but also cost effective. The strong convergence framework is set up by moment convergence analysis. We use the Lotka–Volterra system to elaborate our theory, nevertheless, the method works for a wide range of multi-dimensional superlinear SDE models.
Keywords: Stochastic differential equation; Structure preserving numerical method; n-dimensional superlinear Lotka–Volterra model; Strong convergence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423004111
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:216:y:2024:i:c:p:198-212
DOI: 10.1016/j.matcom.2023.09.011
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().