Multi-phase iterative learning control for high-order systems with arbitrary initial shifts
Dongjie Chen,
Ying Xu,
Tiantian Lu and
Guojun Li
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 216, issue C, 231-245
Abstract:
Aiming at the second-order tracking system with arbitrary initial shifts, this paper presents a multi-phase iterative learning control strategy. Firstly, utilizing the form of solution of the second-order non-homogeneous linear differential equation with constant coefficients and the initial shifts, we can select the appropriate control gain to ensure that the second-order systems are stable and reach the stable output after a fixed time. Secondly, on the premise that the second-order systems have reached the fixed output, two methods are proposed for rectifying the fixed shift, namely, shifts rectifying control and varied trajectory control. Theoretical analysis shows that the multi-stage iterative learning control strategy proposed in this paper can ensure that the second-order systems achieve complete tracking in the specified interval. Finally, the simulation examples affirm the validation of the designed algorithms.
Keywords: Iterative learning control; Initial rectifying; Second-order differential equation; Convergence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423004202
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:216:y:2024:i:c:p:231-245
DOI: 10.1016/j.matcom.2023.09.019
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().