Finite difference discretization for one-dimensional higher-order integral fractional Laplacian and its application
Huixian Wang,
Hongbin Chen and
Jun Zhou
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 216, issue C, 246-262
Abstract:
A simple and easy-to-implement discrete approximation is proposed for one-dimensional higher-order integral fractional Laplacian (IFL), and our method is applied to discrete the fractional biharmonic equation, multi-term fractional differential model and fractal KdV equation. Based on the generating function, a fractional analogue of the central difference scheme to higher-order IFL is provided, the convergence of the discrete approximation is proved. Extensive numerical experiments are provided to confirm our analytical results. Moreover, some new observations are discovered from our numerical results.
Keywords: Higher-order integral fractional Laplacian; Finite difference discretization; Generating function; Fractional biharmonic equation; Multi-term fractional differential model; Fractal KdV equation (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423003956
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:216:y:2024:i:c:p:246-262
DOI: 10.1016/j.matcom.2023.09.009
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().