Advanced numerical scheme and its convergence analysis for a class of two-point singular boundary value problems
Nikhil Sriwastav,
Amit K. Barnwal,
Higinio Ramos,
Ravi P. Agarwal and
Mehakpreet Singh
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 216, issue C, 30-48
Abstract:
In the past decades, many applications related to applied physics, physiology and astrophysics have been modelled using a class of two-point singular boundary value problems (SBVPs). In this article, a novel approach based on the shooting projection method and the Legendre wavelet operational matrix formulation for approximating a class of two-point SBVPs with Dirichlet and Neumann–Robin boundary conditions is proposed. For the new approach, an initial guess is postulated in contrast to the boundary conditions in the first step. The second step deals with the usage of the Legendre wavelet operational matrix method to solve the initial value problem (IVP). Further, the resulting solution of the IVP is utilized at the second endpoint of the domain of a differential equation in a shooting projection method to improve the initial condition. These two steps are repeated until the desired accuracy of the solution is achieved. To support the mathematical formulation, a detailed convergence analysis of the new approach is conducted. The new approach is tested against some existing methods such as various types of the variational iteration method, considering several numerical examples to which it provides high-quality solutions.
Keywords: Two-point singular boundary value problem; Shooting-projection method; Legendre wavelets; Operational matrix of integration; Convergence analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423003749
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:216:y:2024:i:c:p:30-48
DOI: 10.1016/j.matcom.2023.08.037
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().