Chebyshev–Picard iteration methods for solving delay differential equations
Quan Zhou,
Yinkun Wang and
Yicheng Liu
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 217, issue C, 1-20
Abstract:
In this paper, we propose an effective Chebyshev–Picard iteration (CPI) method for solving delay differential equations with a constant delay. This approach adopts the Chebyshev series to represent the solution and improves the accuracy of the solution by successive Picard iterations. The CPI method is implemented in a matrix–vector form efficiently without matrix inversion. We also present a multi-interval CPI method for solving long-term simulation problems. Further, the convergence of the CPI method is analyzed by evaluating the eigenvalues of the coefficient matrices of the iteration. Several numerical experiments including both the linear and nonlinear systems with delay effects are presented to demonstrate the high accuracy and efficiency of the CPI method by comparison with the classic methods.
Keywords: Chebyshev–Picard iteration method; Delay differential equation; Feasible iterative interval; Numerical analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423004238
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:217:y:2024:i:c:p:1-20
DOI: 10.1016/j.matcom.2023.09.023
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().