EconPapers    
Economics at your fingertips  
 

Deep learning based solution of nonlinear partial differential equations arising in the process of arterial blood flow

Bivas Bhaumik, Soumen De and Satyasaran Changdar

Mathematics and Computers in Simulation (MATCOM), 2024, vol. 217, issue C, 21-36

Abstract: The present work introduces a deep learning approach to describe the perturbations of the pressure and radius in arterial blood flow. A mathematical model for the simulation of viscoelastic arterial flow is developed based on the assumption of long wavelength and large Reynolds number. Then, the reductive perturbation method is used to derive nonlinear evolutionary equations describing the resistance of the medium, the elastic properties, and the viscous properties of the wall. Using automatic differentiation, the solutions of nonlinear evolutionary equations at different time scales are represented using state-of-the-art physics-informed deep neural networks that are trained on a limited number of data points. The optimal neural network architecture for solving the nonlinear partial differential equations is found by employing Bayesian Hyperparameter Optimization. The proposed technique provides an alternate approach to avoid time-consuming numerical discretization methods such as finite difference or finite element for solving higher order nonlinear partial differential equations. Additionally, the capability of the trained model is demonstrated through graphs, and the solutions are also validated numerically. The graphical illustrations of pulse wave propagation can provide the correct interpretation of cardiovascular parameters, leading to an accurate diagnosis and successful treatment. Thus, the findings of this study could pave the way for the rapid development of emerging medical machine learning applications.

Keywords: Deep learning; Physics informed neural network; Partial differential equation; Viscoelastic artery; Blood flow (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423004469
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:217:y:2024:i:c:p:21-36

DOI: 10.1016/j.matcom.2023.10.011

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:217:y:2024:i:c:p:21-36