Analysis and controllability of diabetes model for experimental data by using fractional operator
Muhammad Farman,
Aqeel Ahmad,
Anum Zehra,
Kottakkaran Sooppy Nisar,
Evren Hincal and
Ali Akgul
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 218, issue C, 133-148
Abstract:
Diabetes is a silent illness that is endangering public health in society. Diabetes is a chronic disease affecting millions of people worldwide, and understanding the underlying mechanisms of glucose homeostasis is crucial for managing this condition. Diabetes is a significant public health issue due to the early morbidity, mortality, shortened life expectancy, and financial and other expenses to the patient, their careers, and the health care system. In this study, we propose a mathematical model consisting of β−cells, insulin, glucose, and growth hormone that incorporates the fractional operator. Using the Lyapunov function, we treated a global stability analysis and investigated the impact of a new wave of dynamical transmission on the equilibrium points of the second derivative. With the Lipschitz criteria and linear growth, the exact singular solution for the proposed model has been determined. Furthermore, we present a detailed analysis of infections, and numerical simulations are conducted using the Mittag-Leffler Kernel mathematical framework to illustrate the theoretical conclusions for various orders of the fractional derivative. Controllability and observability of the linear system are treated for close loop design to check the relation between the glucose and insulin systems. Overall, our results provide a comprehensive understanding of glucose homeostasis and its underlying mechanisms, contributing to the development of effective diabetes management strategies. The proposed model and mathematical framework offer a valuable tool for investigating complex systems and phenomena, with applications beyond the field of diabetes research and helpful to designing the closed loop for the glucose–insulin system.
Keywords: Diabetes model; Lyapunov stability; Fractal–fractional derivative; Controllability; Linear growth; Close loop design (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423004779
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:218:y:2024:i:c:p:133-148
DOI: 10.1016/j.matcom.2023.11.017
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().