EconPapers    
Economics at your fingertips  
 

The fractional non-polynomial spline method: Precision and modeling improvements

Majeed A. Yousif and Faraidun K. Hamasalh

Mathematics and Computers in Simulation (MATCOM), 2024, vol. 218, issue C, 512-525

Abstract: This research introduces the fractional non-polynomial spline method as a novel scheme for solving the time-fractional Korteweg-de Vries (KdV) equation. The study focuses on numerical analysis and algorithm development for simulation purposes. The proposed method involves the construction of a fractional non-polynomial spline to estimate the equation's solution, offering improved precision and modeling capabilities compared to existing approaches. To assess the stability of the proposed approach, the von Neumann method is employed, demonstrating its unconditional stability within a specific parameter range. To validate the effectiveness of our numerical analysis and simulation algorithm, contour, 2D, and 3D graphs are utilized to compare the solution obtained through our method with an analytical solution. Through rigorous comparative analysis with previous works, the superiority of our approach in terms of accuracy and efficiency is demonstrated. Norm error calculations, specifically the (L2and L∞) error norms, provide a quantitative assessment of the accuracy and reliability of our proposed scheme.

Keywords: Time-fractional Korteweg-de Vries (KdV) equation; Novel approaches; Fractional non-polynomial spline method; Stability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423004949
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:218:y:2024:i:c:p:512-525

DOI: 10.1016/j.matcom.2023.11.033

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:218:y:2024:i:c:p:512-525