EconPapers    
Economics at your fingertips  
 

Fourier-Gegenbauer pseudospectral method for solving time-dependent one-dimensional fractional partial differential equations with variable coefficients and periodic solutions

Kareem T. Elgindy

Mathematics and Computers in Simulation (MATCOM), 2024, vol. 218, issue C, 544-555

Abstract: In this paper, we present a novel pseudospectral (PS) method for solving a new class of initial-value problems (IVPs) of time-dependent one-dimensional fractional partial differential equations (FPDEs) with variable coefficients and periodic solutions. A main ingredient of our work is the use of the recently developed periodic RL/Caputo fractional derivative (FD) operators with sliding positive fixed memory length of Bourafaet al. (2021) or their reduced forms obtained by Elgindy (2023) as the natural FD operators to accurately model FPDEs with periodic solutions. The proposed method converts the IVP into a well-conditioned linear system of equations using the PS method based on Fourier collocations and Gegenbauer quadratures. The reduced linear system has a simple special structure and can be solved accurately and rapidly by using standard linear system solvers. A rigorous study of the computational storage requirements as well as the error and convergence of the proposed method is presented. The idea and results presented in this paper are expected to be useful in the future to address more general problems involving FPDEs with periodic solutions.

Keywords: Fourier collocation; Fractional derivative; Fractional partial differential equation; Gegenbauer quadrature; Periodic solution (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423004950
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:218:y:2024:i:c:p:544-555

DOI: 10.1016/j.matcom.2023.11.034

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:218:y:2024:i:c:p:544-555