An enriched cut finite element method for Stokes interface equations
Kun Wang and
Lin Mu
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 218, issue C, 644-665
Abstract:
In this paper, we consider an enriched cut finite element method (ECFEM) with interface-unfitted meshes for solving Stokes interface equations consisting of two incompressible fluids with different viscosities. By approximating the velocity with the enriched P1 element and the pressure with the P0 element, and stabilizing the Galerkin variational formulation with suitable ghost penalty terms, we propose the new ECFEM and prove that it is well-posed and has the optimal a priori error estimate in the energy norm. All derived results are independent of the interface position. Moreover, compared with other conforming finite element methods with the optimal rate in convergence, the proposed scheme here not only has the minimum degrees of freedom, but also avoids using the derivative of the pressure in the penalty term. The presented numerical examples validate the theoretical predictions.
Keywords: Stokes interface equations; Cut finite element method; Enriched finite element method; Interface-unfitted mesh; Lowest order element (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423005232
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:218:y:2024:i:c:p:644-665
DOI: 10.1016/j.matcom.2023.12.016
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().