EconPapers    
Economics at your fingertips  
 

A promising exponentially-fitted two-derivative Runge–Kutta–Nyström method for solving y′′=f(x,y): Application to Verhulst logistic growth model

K.C. Lee, R. Nazar, N. Senu and A. Ahmadian

Mathematics and Computers in Simulation (MATCOM), 2024, vol. 219, issue C, 28-49

Abstract: Explicit exponentially-fitted two-derivative Runge–Kutta–Nyström method with single f-function and multiple third derivatives is proposed for solving special type of second-order ordinary differential equations with exponential solutions. B-series and rooted tree theory for the proposed method are developed for the derivation of order conditions. Then, we build frequency-dependent coefficients for the proposed method by integrating the second-order initial value problem exactly with solution in the linear composition of set functions eλt and e−λt with λ∈R. An exponentially-fitted two-derivative Runge–Kutta–Nyström method with three stages fifth order is derived. Linear stability and stability region of the proposed method are analyzed. The numerical tests show that the proposed method is more effective than other existing methods with similar algebraic order in the integration of special type of second-order ordinary differential equations with exponential solutions. Also, the proposed method is used to solve a famous application problem, Verhulst logistic growth model and the result shows the proposed method still works effectively for solving this model.

Keywords: Two-derivative Runge–Kutta–Nyström method; Second-order ordinary differential equations; Exponentially-fitted; Stability region; Numerical test (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423005256
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:219:y:2024:i:c:p:28-49

DOI: 10.1016/j.matcom.2023.12.018

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:28-49