Solving Constrained Pseudoconvex Optimization Problems with deep learning-based neurodynamic optimization
Dawen Wu and
Abdel Lisser
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 219, issue C, 424-434
Abstract:
In this paper, we consider Constrained Pseudoconvex Nonsmooth Optimization Problems (CPNOPs), which are a class of nonconvex optimization problems. Due to their nonconvexity, classical convex optimization algorithms are unable to solve them, while existing methods, i.e., numerical integration methods, are inadequate in terms of computational performance. In this paper, we propose a novel approach for solving CPNOPs that combines neurodynamic optimization with deep learning. We construct an initial value problem (IVP) involving a system of ordinary differential equations for a CPNOP and use a surrogate model based on a neural network to approximate the IVP. Our approach transforms the CPNOP into a neural network training problem, leveraging the power of deep learning infrastructure to improve computational performance and eliminate the need for traditional optimization solvers. Our experimental results show that our approach is superior to numerical integration methods in terms of both solution quality and computational efficiency.
Keywords: Constrained Pseudoconvex Optimization Problems; Neurodynamic optimization; Neural networks; Ordinary differential equations (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423005396
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:219:y:2024:i:c:p:424-434
DOI: 10.1016/j.matcom.2023.12.032
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().