Novel closed-form analytical solutions and modulation instability spectrum induced by the Salerno equation describing nonlinear discrete electrical lattice via symbolic computation
Nikita Mann,
Setu Rani,
Sachin Kumar and
Raj Kumar
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 219, issue C, 473-490
Abstract:
A nonlinear electrical lattice is an effective experimental tool for dealing with nonlinear dispersive media and creating possibilities for the realistic modeling of electrical soliton. In this work, we discuss the dynamical behavior of the governing (1+1)-dimensional time–space Salerno equation, which describes the discrete electrical lattice with nonlinear dispersion. The different kinds of solutions in the form of periodic, Jacobi elliptic, and exponential functions are obtained by the two analytical approaches, namely the modified generalized exponential rational function method (MGERFM) and the extended sinh-Gordon equation expansion method (shGEEM). The MGERF approach is applied to construct exact solitary wave solutions containing trigonometry, hyperbolic and exponential functions, while the extended shGEE technique is employed to obtain periodic wave solutions containing hyperbolic and Jacobi elliptic functions via performing the symbolic computation in the software package MATHEMATICA. Moreover, by means of standard linear-stability analysis, the modulation instability (MI) and the MI gain spectrum is analytically computed for the considered equation. By selecting suitable parametric values, solution profiles are portrayed in order to make the solutions physically relevant. These results yield periodic waves, kink waves, multi-soliton, and their interactions. By comparing the obtained solutions to the previous findings, we can reveal the novelty of the solutions. In addition, all the obtained solutions were verified by substituting them back into the governing equation using the Mathematica software. The acquired results are significant for the study of wave propagation, signal transmission, and applications of super-transmission phenomena.
Keywords: Discrete electrical lattice; Extended sinh-Gordon equation expansion method; Modified generalized exponential rational function method; Symbolic computation work; Analytical solutions; Dynamical behavior; Modulation instability analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423005384
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:219:y:2024:i:c:p:473-490
DOI: 10.1016/j.matcom.2023.12.031
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().