A priori and a posteriori error estimates of a space–time Petrov–Galerkin spectral method for time-fractional diffusion equation
Bo Tang,
Wenting Mao and
Zhankuan Zeng
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 219, issue C, 559-572
Abstract:
Time-fractional diffusion equation is an important transport dynamical model for simulating fractal time random walk. This article is devoted to investigating the a priori and a posteriori error estimates for this model equation. A Petrov–Galerkin spectral method is revisited in this paper to address our problem, which the generalized Jacobi functions and Fourier-like basis functions are utilized as basis for constructing efficient and accurate space–time spectral approximations. Rigorous proofs are given for the stability of our spectral scheme. And then the convergence of the proposed method is proved by establishing an a priori error estimate. Specifically, an efficient and reliable a posteriori error estimator is introduced, and we derive that the residual-based error indicator provides an upper bound and a lower bound for the numerical error. Finally, several numerical experiments are provided to examine our theoretical claims.
Keywords: Time-fractional diffusion equation; Space–time Petrov–Galerkin spectral method; A priori error estimate; A posteriori error estimator (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847542400003X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:219:y:2024:i:c:p:559-572
DOI: 10.1016/j.matcom.2024.01.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().