A stable meshless numerical scheme using hybrid kernels to solve linear Fredholm integral equations of the second kind and its applications
Tahereh Akbari,
Mohsen Esmaeilbeigi and
Davoud Moazami
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 220, issue C, 1-28
Abstract:
The main challenge in kernel-based approximation theory and its applications is the conflict between accuracy and stability. Hybrid kernels can be used as one of the simplest and most effective tools to manage this challenge. This article uses a meshless scheme based on hybrid radial kernels (HRKs) to solve second kind Fredholm integral equations (FIEs). The method estimates the solution via the discrete collocation procedure based on a hybrid kernel that combines appropriate kernels with suitable weight parameters. The optimal parameters in the hybrid kernels can be calculated using the particle swarm optimization (PSO) algorithm based on the root mean square (RMS) error. This technique converts the problem under investigation into a system of linear equations. Moreover, the convergence of the suggested hybrid approach is studied. Lastly, some numerical experiments are included to reveal the accuracy and stability of the hybrid kernels approach. The numerical results demonstrate that the presented hybrid procedure meaningfully reduces the ill-conditioning of the operational matrices, at the same time, it maintains the accuracy and stability for all values of shape parameters.
Keywords: Fredholm integral equations; Hybrid kernels; Particle swarm optimization; Accuracy; Stability; Non-rectangular domain (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424000168
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:220:y:2024:i:c:p:1-28
DOI: 10.1016/j.matcom.2024.01.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().