EconPapers    
Economics at your fingertips  
 

Option pricing under multifactor Black–Scholes model using orthogonal spline wavelets

Dana Černá and Kateřina Fiňková

Mathematics and Computers in Simulation (MATCOM), 2024, vol. 220, issue C, 309-340

Abstract: The paper focuses on pricing European-style options on multiple underlying assets under the Black–Scholes model represented by a nonstationary partial differential equation. The numerical solution of such equations is challenging in dimensions exceeding three, primarily due to the so-called curse of dimensionality. The main contribution of the paper is the design and analysis of the method based on combining the sparse wavelet-Galerkin method and the Crank–Nicolson scheme with Rannacher time-stepping enhanced by Richardson extrapolation, which helps overcome the curse of dimensionality. The next contribution is constructing a new orthogonal cubic spline wavelet basis on the interval and a sparse tensor product wavelet basis on the unit cube, which is suitable for the proposed method. The resulting method brings the following important advantages. The method is higher-order convergent with respect to both temporal and spatial variables, and the number of basis functions is significantly reduced compared to a full grid. Furthermore, many matrices involved in the computation are identity matrices, which results in a considerable simplification of the algorithm. Moreover, we prove that the condition numbers of discretization matrices are uniformly bounded and do not depend on the dimension, even without preconditioning, which leads to a small number of iterations when solving the resulting linear system. Numerical experiments are presented for several types of European-style options.

Keywords: Black–Scholes model; European option; Orthogonal spline wavelet; Sparse grid; Wavelet-Galerkin method; Condition number (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424000338
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:220:y:2024:i:c:p:309-340

DOI: 10.1016/j.matcom.2024.01.020

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:220:y:2024:i:c:p:309-340