Convergence analysis of a spectral numerical method for a peridynamic formulation of Richards’ equation
Fabio V. Difonzo and
Sabrina F. Pellegrino
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 223, issue C, 219-228
Abstract:
We study the implementation of a Chebyshev spectral method with forward Euler integrator proposed in Berardi et al.(2023) to investigate a peridynamic nonlocal formulation of Richards’ equation. We prove the convergence of the fully-discretization of the model showing the existence and uniqueness of a solution to the weak formulation of the method by using the compactness properties of the approximated solution and exploiting the stability of the numerical scheme. We further support our results through numerical simulations, using initial conditions with different order of smoothness, showing reliability and robustness of the theoretical findings presented in the paper.
Keywords: Richards’ equation; Nonlocal models; Peridynamics; Chebyshev spectral methods (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424001344
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:223:y:2024:i:c:p:219-228
DOI: 10.1016/j.matcom.2024.04.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().