EconPapers    
Economics at your fingertips  
 

Bifurcation and chaos analysis of a fractional-order delay financial risk system using dynamic system approach and persistent homology

Ke He, Jianping Shi and Hui Fang

Mathematics and Computers in Simulation (MATCOM), 2024, vol. 223, issue C, 253-274

Abstract: A comprehensive theoretical and numerical analysis of the dynamical features of a fractional-order delay financial risk system(FDRS) is presented in this paper. Applying the linearization method and Laplace transform, the critical value of delay when Hopf bifurcation first appears near the equilibrium is firstly derived in an explicit formula. Comparison simulations clarify the reasonableness of fractional-order derivative and delay in describing the financial risk management processes. Then we employ persistent homology and six topological indicators to reveal the geometric and topological structures of FDRS in delay interval. Persistence barcodes, diagrams, and landscapes are utilized for visualizing the simplicial complex’s information. The approximate values of delay when FDRS undergoes different periodic oscillations and even chaos are determined. The existence of periodic windows within the chaotic interval is correctly decided. The results of this paper contribute to capturing intricate information of underlying financial activities and detecting the critical transition of FDRS, which has promising and reliable implications for a deeper comprehension of complex behaviors in financial markets.

Keywords: Fractional-order system; Delay; Hopf bifurcation; Chaos; Persistent homology (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424001393
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:223:y:2024:i:c:p:253-274

DOI: 10.1016/j.matcom.2024.04.013

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:223:y:2024:i:c:p:253-274