EconPapers    
Economics at your fingertips  
 

Comparison of evolutionary algorithms for solving risk-based energy resource management considering conditional value-at-risk analysis

José Almeida, Joao Soares, Fernando Lezama, Zita Vale and Bruno Francois

Mathematics and Computers in Simulation (MATCOM), 2024, vol. 224, issue PB, 87-110

Abstract: Energy management systems must evolve due to the widespread use of distributed energy resources in modern society. In fact, with the current high penetration of renewables and other resources like electric vehicles, the challenge of managing energy resources becomes more difficult. Uncertainty and unpredictability from distributed resources open the door for unique undesirable situations, often known as extreme events. Despite the low likelihood of occurrence, such severe events represent a significant risk to an aggregator’s resource management, for example. In this paper, we propose a day-ahead energy resource management model for an aggregator in a 13-bus distribution network with high penetration of distributed energy resources. In the proposed model, we consider a risk-based mechanism through the conditional value-at-risk method for risk measurement of these extreme events. Due to the complexity of the model, we also propose the use of evolutionary algorithms, a set of stochastic search algorithms, to find near-optimal solutions to the problem. Results show that implementing risk-averse strategies reduces the cost of the worst scenario and scheduling. From the tested algorithms, ReSaDE provides the solutions with the lowest cost, which is an improvement from previous work, and a reduction of around 13% in the worst-scenario costs comparing a risk-neutral approach to a risk-averse approach.

Keywords: Aggregator; Computational intelligence; Energy resource management; Evolutionary algorithms; Risk analysis; Smart grid (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423002902
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:224:y:2024:i:pb:p:87-110

DOI: 10.1016/j.matcom.2023.07.010

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:224:y:2024:i:pb:p:87-110