EconPapers    
Economics at your fingertips  
 

Refining Heisenberg’s principle: A greedy approximation of step functions with triangular waveform dictionaries

Alessandro Mazzoccoli, Jorge Andres Rivero and Pierluigi Vellucci

Mathematics and Computers in Simulation (MATCOM), 2024, vol. 225, issue C, 165-176

Abstract: In this paper, we consider a step function characterized by a real-valued sequence and its linear expansion representation constructed via the matching pursuit (MP) algorithm. We utilize a waveform dictionary based on the triangular function as part of this algorithm and representation. The waveform dictionary is comprised of waveforms localized in the time–frequency domain. In view of this, we prove that the triangular waveforms are more efficient than the rectangular waveforms used in a prior study by achieving a product of variances in the time–frequency domain closer to the lower bound of the Heisenberg Uncertainty Principle. We provide a MP algorithm solvable in polynomial time, contrasting the common exponential time when using Gaussian windows. We apply this algorithm on simulated data and real GDP data from 1947–2024 to demonstrate its application and efficiency.

Keywords: Greedy algorithm; Waveform dictionary; Step functions; Heisenberg uncertainty principle (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847542400185X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:225:y:2024:i:c:p:165-176

DOI: 10.1016/j.matcom.2024.05.012

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:165-176