Matrix splitting preconditioning based on sine transform for solving two-dimensional space-fractional diffusion equations
Kang-Ya Lu and
Cun-Qiang Miao
Mathematics and Computers in Simulation (MATCOM), 2024, vol. 225, issue C, 835-856
Abstract:
Finite difference discretization of the two-dimensional space-fractional diffusion equations derives a complicated linear system consisting of identity matrix and four scaled block-Toeplitz with Toeplitz block (BTTB) matrices resulted from the left and right Riemann–Liouville fractional derivatives in different directions. Incorporating with the diffusion coefficients and the symmetric parts of the BTTB matrices, we construct a diagonal and symmetric splitting (DSS) iteration method, which is demonstrated to be convergent conditionally when the considered space-fractional diffusion equations have sufficiently close diffusion coefficients. By further replacing the symmetric Toeplitz matrices involved in the BTTB matrices with τ matrices, an approximated DSS (ADSS) preconditioner based on two-dimensional fast sine transform is designed to accelerate the convergence rates of the Krylov subspace iteration methods. In this way, the total computational complexity of the ADSS-preconditioned GMRES method will be of O(n2logn), where n2 represents the dimension of the corresponding discrete linear system. In addition, theoretical analysis demonstrates that the eigenvalues of the ADSS-preconditioned matrix are weakly clustered around a complex disk centered at 1 with the radius less than 1. Numerical experiments show that the ADSS-preconditioned GMRES method is much more efficient than the other existing methods, and can show h-independent convergence behavior.
Keywords: Diagonal and symmetric splitting; Preconditioner; Generating function; Krylov subspace iteration methods (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423003828
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:225:y:2024:i:c:p:835-856
DOI: 10.1016/j.matcom.2023.08.044
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().