EconPapers    
Economics at your fingertips  
 

Non-fragile control of discrete-time conic-type nonlinear Markovian jump systems under deception attacks using event-triggered scheme and Its application

M. Mubeen Tajudeen, M. Syed Ali, Ganesh Kumar Thakur, Bandana Priya and R. Perumal

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 227, issue C, 209-225

Abstract: The non-fragile control issue of discrete-time conic-type nonlinear Markov jump systems under deception attacks has been investigated using an event-triggered method. The nonlinear terms satisfy the conic-type nonlinear constraint condition that lies in a known hypersphere with an uncertain center is employed. The deception attack may obstruct normal communication in an effort to obtain confidential information. In addition, a non-fragile event-triggered controller is suggested to further conserve communication resources. As a stochastic process, a deception attack is manageable by the established controller. Also, by choosing an appropriate Lyapunov-Krasovskii functional, a set of necessary conditions is found in terms of linear matrix inequalities (LMIs) that guarantee mean square stability of the discrete-time conic-type nonlinear Markov jump system in the presence of deception attacks. Finally, the proposed non-fragile event-triggered control techniques is validated with a DC-DC motor application system and another numerical example.

Keywords: Event-triggered control; Conic-type nonlinearity; Discrete-time system; Deception attacks; Markov-jump system (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003100
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:227:y:2025:i:c:p:209-225

DOI: 10.1016/j.matcom.2024.08.007

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:227:y:2025:i:c:p:209-225