Dimension reduction for Quasi-Monte Carlo methods via quadratic regression
Junichi Imai and
Ken Seng Tan
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 227, issue C, 371-390
Abstract:
Quasi-Monte Carlo (QMC) methods have been gaining popularity in computational finance as they are competitive alternatives to Monte Carlo methods that can accelerate numerical accuracy. This paper develops a new approach for reducing the effective dimension combined with a randomized QMC method. A distinctive feature of the proposed approach is its sample-based transformation that enables us to choose a flexible manipulation via regression. In the proposed approach, the first step is to perform a regression using the samples to estimate the parameters of the regression model. An optimal transformation is proposed based on the regression result to minimize the effective dimension. An advantage of this approach is that adopting a statistical approach allows greater flexibility in selecting the regression model. In addition to a linear model, this paper proposes a dimension reduction method based on a linear-quadratic model for regression. In numerical experiments, we focus on pricing different types of exotic options to test the effectiveness of the proposed approach. The numerical results show that different regression models are chosen depending on the underlying risk process and the type of derivative securities. In particular, we show several examples where the proposed method works while existing dimension reductions are ineffective.
Keywords: Quasi–Monte Carlo method; European option pricing; Effective dimension; Variance reduction (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003185
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:227:y:2025:i:c:p:371-390
DOI: 10.1016/j.matcom.2024.08.016
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().