EconPapers    
Economics at your fingertips  
 

Convergence analysis of a novel high order networks model based on entropy error function

Qianru Huang, Qinwei Fan, Zhiwei Xing, Xiaofei Yang and Xingshi He

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 227, issue C, 405-419

Abstract: It is generally known that the error function is one of the key factors that determine the convergence, stability and generalization ability of neural networks. For most feedforward neural networks, the squared error function is usually chosen as the error function to train the network. However, networks based on the squared error function can lead to slow convergence and easily fall into local optimum in the actual training process. Recent studies have found that, compared to the squared error function, the gradient method based on the entropy error function measures the difference between the probability distribution of the model output and the probability distribution of the true labels during the iterative process, which can be more able to handle the uncertainty in the classification problem, less likely to fall into a local optimum and can learn to converge more rapidly. In this paper, we propose a batch gradient method for Sigma-Pi-Sigma neural networks based on the entropy error function and rigorously demonstrate the weak and strong convergence of the new algorithm in the batch input mode. Finally, the theoretical results and effectiveness of the algorithm are verified by simulation.

Keywords: Sigma-Pi-Sigma neural network; Entropy error function; Gradient method; Batch input training; Convergence (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003161
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:227:y:2025:i:c:p:405-419

DOI: 10.1016/j.matcom.2024.08.014

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:227:y:2025:i:c:p:405-419