An efficient recursive technique with Padé approximation for a kind of Lane–Emden type equations emerging in various physical phenomena
Jyoti, and
Mandeep Singh
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 227, issue C, 511-526
Abstract:
The study numerically examined a class of nonlinear singular differential problems known as the Lane–Emden differential equation, which emerges in numerous real-world situations. The primary goal of this work is to formulate a computationally efficient iterative technique for solving the nonlinear Lane–Emden initial value problems. The proposed approach is a hybrid of the homotopy perturbation method and the Padé approximation. The nonlinear singular Lane–Emden initial value problem (SLEIVP) is transformed into an equivalent recursive integral employing the Picard’s approach. To resolve the singularity and nonlinearity, the recursive integral equation is transformed into a system of integral equations by using the homotopy notion. Furthermore, to enhance the convergence rate of the technique, Padé approximation is taken into account. The convergence analysis for the proposed approach is also conducted. The present technique is tested on SLEIVPs and numerical findings are compared with the existing techniques, to demonstrate the accuracy, effectiveness and ease of use.
Keywords: Lane–Emden equation; Singular initial value problem; Homotopy perturbation method; Iterative method; Padé approximation; Convergence analysis (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003355
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:227:y:2025:i:c:p:511-526
DOI: 10.1016/j.matcom.2024.08.025
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().