EconPapers    
Economics at your fingertips  
 

An efficient recursive technique with Padé approximation for a kind of Lane–Emden type equations emerging in various physical phenomena

Jyoti, and Mandeep Singh

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 227, issue C, 511-526

Abstract: The study numerically examined a class of nonlinear singular differential problems known as the Lane–Emden differential equation, which emerges in numerous real-world situations. The primary goal of this work is to formulate a computationally efficient iterative technique for solving the nonlinear Lane–Emden initial value problems. The proposed approach is a hybrid of the homotopy perturbation method and the Padé approximation. The nonlinear singular Lane–Emden initial value problem (SLEIVP) is transformed into an equivalent recursive integral employing the Picard’s approach. To resolve the singularity and nonlinearity, the recursive integral equation is transformed into a system of integral equations by using the homotopy notion. Furthermore, to enhance the convergence rate of the technique, Padé approximation is taken into account. The convergence analysis for the proposed approach is also conducted. The present technique is tested on SLEIVPs and numerical findings are compared with the existing techniques, to demonstrate the accuracy, effectiveness and ease of use.

Keywords: Lane–Emden equation; Singular initial value problem; Homotopy perturbation method; Iterative method; Padé approximation; Convergence analysis (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003355
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:227:y:2025:i:c:p:511-526

DOI: 10.1016/j.matcom.2024.08.025

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:227:y:2025:i:c:p:511-526