EconPapers    
Economics at your fingertips  
 

Modelling the comparative influence of conjugation and transformation on plasmid spread in biofilms

Julien Vincent, Alberto Tenore, Maria Rosaria Mattei and Luigi Frunzo

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 228, issue C, 156-177

Abstract: In this work, we propose a multidimensional continuum model for plasmid dissemination in biofilms via horizontal gene transfer. The model is formulated as a system of nonlocal partial differential equations derived from mass conservation laws and reaction kinetics principles. Biofilm is modelled as a homogeneous, viscous, incompressible fluid with a velocity given by Darcy’s law. The model considers plasmid-carrying cells as distinct volume fractions and their vertical and horizontal gene transfer via conjugation and natural transformation. The model encompasses local detoxification of biofilm due to plasmid-borne resistance gene and its effect at the community scale. The equations are solved numerically and simulations are performed to investigate how transformation and conjugation regulate the dynamics and the ecology of plasmid spread in both a multidimensional and one-dimensional biofilm system. Model results are able to predict relevant experimentally observed results in plasmid spread, such as the respective intensity of different horizontal gene transfer mechanisms and the importance of selective pressure. Moreover, model results predict coexistence of plasmid-carrying and plasmid-free bacteria even in conditions when one should out-compete the other, offering a simple modelling explanation on global plasmid persistence in bacterial communities.

Keywords: Horizontal gene transfer; Plasmid dissemination; Biofilm modelling; Nonlocal PDEs; Metal resistance (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003203
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:228:y:2025:i:c:p:156-177

DOI: 10.1016/j.matcom.2024.08.018

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:228:y:2025:i:c:p:156-177