An exponential spectral deferred correction method for multidimensional parabolic problems
Yurun Wang and
Fei Liu
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 228, issue C, 245-262
Abstract:
We present some efficient algorithms based on an exponential time differencing spectral deferred correction (ETDSDC) method for multidimensional second and fourth-order parabolic problems with non-periodic boundary conditions including Dirichlet, Neumann, Robin boundary conditions. Similar to the Fourier spectral method for periodic problems, the key to the efficiency of our algorithms is to construct diagonal discrete linear operators via Legendre–Galerkin methods with Fourier-like basis functions. In combination with the ETDSDC scheme, the proposed methods are spectrally accurate in space and up to 10th-order accurate in time (as shown in this work). We demonstrate the high-order of convergence and efficiency of our algorithms in solving parabolic equations through a series of two-dimensional and three-dimensional examples including Ginzburg–Landau and Allen–Cahn equations.
Keywords: ETDSDC; Legendre–Galerkin methods; Fourier-like basis functions; Parabolic equations; Non-periodic boundary conditions (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003495
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:228:y:2025:i:c:p:245-262
DOI: 10.1016/j.matcom.2024.09.003
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().