Rich dynamics of a reaction–diffusion Filippov Leslie–Gower predator–prey model with time delay and discontinuous harvesting
Xubin Jiao,
Li Liu and
Xiao Yu
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 228, issue C, 339-361
Abstract:
To reflect the harvesting effect, a nonsmooth Filippov Leslie–Gower predator–prey model is proposed. Unlike traditional Filippov models, the time delay and reaction–diffusion under the condition of homogeneous Neumann boundary are considered in our system. The stability of equilibrium and the existence of the spatial Hopf bifurcation of the subsystems at the positive equilibrium are investigated. Furthermore, a comprehensive analysis is conducted on the sliding mode dynamics as well as the regular, virtual, and pseudoequilibria. The findings reveal that our Filippov system exhibits either a globally asymptotically stable regular equilibrium, a globally asymptotically stable time periodic solution, or a globally asymptotically stable pseudoequilibrium, contingent upon the specific values of the time delay and threshold level. A boundary point bifurcation, which transform a stable equilibrium point or periodic solution into a stable pseudoequilibrium, is demonstrated to emphasize the impact of time delay on our Filippov system and the significance of threshold control. Meanwhile, two kinds of global sliding bifurcations are exhibited, which sequentially transform a stable periodic solutions below the threshold into a grazing, sliding switching, and crossing bifurcations, depending on changes in the time delay or threshold level. Our results indicate that bucking bifurcation and crossing bifurcation pose significant challenges to the control of our Filippov system.
Keywords: Filippov system; Reaction–diffusion; Time delay; Discontinuous harvesting; Sliding bifurcation (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003768
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:228:y:2025:i:c:p:339-361
DOI: 10.1016/j.matcom.2024.09.022
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().