EconPapers    
Economics at your fingertips  
 

Global well-posedness and dynamics of spatial diffusion HIV model with CTLs response and chemotaxis

Peng Wu

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 228, issue C, 402-417

Abstract: In this paper, we study the global well-posedness and global dynamics of a reaction–diffusion HIV infection model with the chemotactic movement of CTLs (Cytotoxic T lymphocytes). We first show the global existence and uniform boundedness for solutions of the system with general functional incidences. Then, for the model with bilinear incidence rate, we discuss the existence conditions of the three equilibria (infection-free, chemokines-extinct, chemokines-acute equilibria) of the model and obtain the conclusion of the local asymptotic stability of these equilibria by analyzing the linearized system at these equilibria. Moreover, by constructing reasonable Lyapunov functionals, we investigate the global stability and attractivity of the equilibria. Applying the Lp−Lq estimate, Young’s inequality, Gagiardo-Nirenberg inequality and the parabolic regularity theorem, we also discuss the convergence rates of the equilibria. Finally, some numerical simulations are conducted to verify the theoretical results.

Keywords: HIV model; Reaction–diffusion; CTLs response; Chemotaxis; Global well-posedness; Global dynamics (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003744
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:228:y:2025:i:c:p:402-417

DOI: 10.1016/j.matcom.2024.09.020

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:228:y:2025:i:c:p:402-417