EconPapers    
Economics at your fingertips  
 

Finding the minimum k-weighted dominating sets using heuristic algorithms

E. Barrena, S. Bermudo, A.G. Hernández-Díaz, A.D. López-Sánchez and J.A. Zamudio

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 228, issue C, 485-497

Abstract: In this work, we propose, analyze, and solve a generalization of the k-dominating set problem in a graph, when we consider a weighted graph. Given a graph with weights in its edges, a set of vertices is a k-weighted dominating set if for every vertex outside the set, the sum of the weights from it to its adjacent vertices in the set is bigger than or equal to k. The k-weighted domination number is the minimum cardinality among all k-weighted dominating sets. Since the problem of finding the k-weighted domination number is NP-hard, we have proposed several problem-adapted construction and reconstruction techniques and embedded them in an Iterated Greedy algorithm. The resulting sixteen variants of the Iterated Greedy algorithm have been compared with an exact algorithm. Computational results show that the proposal is able to find optimal or near-optimal solutions within a short computational time. To the best of our knowledge, the k-weighted dominating set problem has never been studied before in the literature and, therefore, there is no other state-of-the-art algorithm to solve it. We have also included a comparison with a particular case of our problem, the minimum dominating set problem and, on average, we achieve same quality results within around 50% of computation time.

Keywords: Edge-weight; Dominating set; Metaheuristic algorithm; Iterated greedy algorithm (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003653
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:228:y:2025:i:c:p:485-497

DOI: 10.1016/j.matcom.2024.09.010

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:228:y:2025:i:c:p:485-497