Discretisation of the Hough parameter space for fitting and recognising geometric primitives in 3D point clouds
Chiara Romanengo,
Bianca Falcidieno and
Silvia Biasotti
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 228, issue C, 73-86
Abstract:
Research in recognising and fitting simple geometric shapes has been ongoing since the 1970s, with various approaches proposed, including stochastic methods, parameter methods, primitive-based registration techniques, and more recently, deep learning. The Hough transform is a method of interest due to its demonstrated robustness to noise and outliers, ability to handle missing data, and support for multiple model instances. Unfortunately, one of the main limitations of the Hough transform is how to properly discretise its parameter space, as increasing their number or decreasing the sampling frequency can make it computationally expensive.
Keywords: Fitting and recognising geometric primitives; Hough transform; Parameter space discretisation; Point clouds (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003458
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:228:y:2025:i:c:p:73-86
DOI: 10.1016/j.matcom.2024.08.033
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().