EconPapers    
Economics at your fingertips  
 

Stochastic SIR epidemic model dynamics on scale-free networks

A. Settati, T. Caraballo, A. Lahrouz, I. Bouzalmat and A. Assadouq

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 229, issue C, 246-259

Abstract: This study introduces a stochastic SIR (Susceptible–Infectious–Recovered) model on complex networks, utilizing a scale-free network to represent inter-human contacts. The model incorporates a threshold parameter, denoted as Rσ, which plays a decisive role in determining whether the disease will persist or become extinct. When Rσ<1, the disease exhibits exponential decay and eventually disappear. Conversely, when Rσ>1, the disease persists. The critical case of Rσ=1 is also examined. Furthermore, we establish a unique stationary distribution for Rσ>1. Our findings highlight the significance of network topology in modeling disease spread, emphasizing the role of social networks in epidemiology. Additionally, we present computational simulations that consider the scale-free network’s topology, offering comprehensive insights into the behavior of the stochastic SIR model on complex networks. These results have substantial implications for public health policy, disease control strategies, and epidemic modeling in diverse contexts.

Keywords: Stochastic SIR model; Scale-free network; Extinction; Persistence; Stationary distribution (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003823
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:229:y:2025:i:c:p:246-259

DOI: 10.1016/j.matcom.2024.09.027

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:229:y:2025:i:c:p:246-259