Efficient approximation of global population dynamic models through statistical inference using local data
Md Aktar Ul Karim,
Ruqaiya Altaf Shaikh and
Amiya Ranjan Bhowmick
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 229, issue C, 96-128
Abstract:
Biological growth curves are pivotal in predicting natural growth across disciplines, typically analyzed using nonlinear least squares or maximum likelihood methods. Bhowmick et al. (2014) introduced the interval-specific rate of parameters (ISRP) for growth equations, improving the estimation of relative growth rate (RGR) and model selection accuracy. Despite its effectiveness, computing these model-specific RGR estimates involves complex calculations and lacks explicit expressions for many nonlinear models. Also, for highly nonlinear models and non-monotonic data where the parameters are non-linearly related, the computation of interval estimates is almost impossible and may suffer from significant approximation errors. So, the need for a more efficient computation method for ISRP remains a significant challenge in growth studies. In this article, we propose a computational approach to obtain interval estimates of parameters based on the maximum likelihood estimation method. The likelihood function is maximized using the data on smaller intervals. Our study underscores the importance of an efficient ISRP computation technique, providing a more stable, unbiased, and normally distributed estimator. The most important advantage is that it can be implemented using existing optimizers in software packages efficiently, therefore, giving more accessibility to the practitioners. Both simulation studies and real data analysis have been carried out to validate the proposed estimation process. Additionally, its applicability to non-monotonic growth profiles and its robustness in handling highly non-linear growth equations highlight its versatility. We also developed a web application GpEM-R which is freely available for researchers and practitioners to analyze growth data.
Keywords: Von Bertalanffy model; Web application; GpEM-R; Parameter sensitivity analysis; Power curves; Hypothesis testing; Stability analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424003793
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:229:y:2025:i:c:p:96-128
DOI: 10.1016/j.matcom.2024.09.024
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().