EconPapers    
Economics at your fingertips  
 

A parsimonious dynamic mixture for heavy-tailed distributions

Marco Bee

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 230, issue C, 193-206

Abstract: Dynamic mixture distributions are convenient models for highly skewed and heavy-tailed data. However, estimation has proved to be challenging and computationally expensive. To address this issue, we develop a more parsimonious model, based on a one-parameter weight function given by the exponential cumulative distribution function. Parameter estimation is carried out via maximum likelihood, approximate maximum likelihood and noisy cross-entropy. Simulation experiments and real-data analyses suggest that approximate maximum likelihood is the best method in terms of RMSE, albeit at a high computational cost. With respect to the version of the dynamic mixture with weight equal to the two-parameter Cauchy cumulative distribution function, the reduced flexibility of the present model is more than compensated by better statistical and computational properties.

Keywords: Dynamic mixtures; Exponential distribution; Noisy cross-entropy; Weight function (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847542400452X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:230:y:2025:i:c:p:193-206

DOI: 10.1016/j.matcom.2024.11.011

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:matcom:v:230:y:2025:i:c:p:193-206