EconPapers    
Economics at your fingertips  
 

Effective polygonal mesh generation and refinement for VEM

Stefano Berrone and Fabio Vicini

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 231, issue C, 239-258

Abstract: In the present work we introduce a novel refinement algorithm for two-dimensional elliptic partial differential equations discretized with Virtual Element Method (VEM). The algorithm improves the numerical solution accuracy and the mesh quality through a controlled refinement strategy applied to the generic polygonal elements of the domain tessellation. The numerical results show that the outlined strategy proves to be versatile and possibly applicable to each two-dimensional problem where polygonal meshes offer advantages. In particular, we focus on the simulation of flow in fractured media, specifically using the Discrete Fracture Network (DFN) model. A residual a-posteriori error estimator tailored for the DFN case is employed. We chose this particular application to emphasize the effectiveness of the algorithm in handling complex geometries. All the numerical tests demonstrate optimal convergence rates for all the tested VEM orders.

Keywords: Mesh adaptivity; Virtual Element Method; Polygonal mesh refinement; Convergence and optimality (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424004786
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:231:y:2025:i:c:p:239-258

DOI: 10.1016/j.matcom.2024.12.007

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:231:y:2025:i:c:p:239-258