EconPapers    
Economics at your fingertips  
 

Analysis of repairable discrete-time queueing systems with negative customers, disasters, balking customers and interruptible working vacations under Bernoulli schedule

Shipei Wu and Shaojun Lan

Mathematics and Computers in Simulation (MATCOM), 2025, vol. 232, issue C, 102-122

Abstract: The study of discrete-time queueing systems is important for modeling and optimizing real-world systems that operate in fixed time intervals, such as telecommunications, computer networks, and manufacturing. This paper contributes to this field by analyzing two unreliable discrete-time Geo/G/1 queueing models that incorporate Bernoulli working vacation interruptions and balking customers under two different killing strategies, allowing for a more realistic representation of disruptions in service operations. After serving all currently present positive customers, the server promptly begins a working vacation. If a service is completed and there are still positive customers awaiting service during this vacation period, the server will either attend to the next customer at the normal speed with a probability of p, or continue to serve the existing customer at a reduced speed with a probability of 1−p. Employing the supplementary variable method and the probability generating function technique, we obtain the steady-state queue length distributions and sojourn time distributions for both models. Besides, some crucial performance characteristics are presented. Finally, Sensitivity analysis is conducted through numerical examples to explore the operational characteristics and patterns of the systems under consideration. The findings of this study can be applied to optimizing operations in digital communication systems, minimizing customer waiting times and reducing the risk of server failures.

Keywords: Discrete-time queue; Working vacation; Negative customers; Disasters; Sojourn time (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424004877
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:232:y:2025:i:c:p:102-122

DOI: 10.1016/j.matcom.2024.12.018

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:matcom:v:232:y:2025:i:c:p:102-122