An adaptive mesh refinement method considering control errors for pseudospectral discretization
Hesong Li,
Zhaoting Li,
Hongbo Zhang and
Yi Wang
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 232, issue C, 140-159
Abstract:
This paper presents an adaptive mesh refinement method that considers control errors for solving pseudospectral optimal control problems. Firstly, a method for estimating errors in both states and controls is presented. Based on the estimation results, an adaptive mesh refinement method is subsequently devised. This method increases and reduces the number of collocation points in accordance with a theoretical convergence rate that incorporates both state and control errors. Furthermore, in addition to dividing intervals resulting from a large number of collocation points, new intervals are also generated when control errors exceed tolerance. As a result, the mesh density near the point with the largest control error is effectively increased, thereby improving the discretization accuracy. The effectiveness of the method is illustrated through three numerical examples, and its performance is evaluated in comparison to other adaptive mesh refinement methods. The numerical results demonstrate that the proposed method exhibits superior performance in terms of capturing the nonsmooth and discontinuous changes and achieving an accurate solution, while requiring fewer iterations.
Keywords: Pseudospectral discretization; Error estimation; Mesh refinement (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475425000059
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:232:y:2025:i:c:p:140-159
DOI: 10.1016/j.matcom.2025.01.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().