State Dependent Riccati for dynamic boundary control to optimize irrigation in Richards’ equation framework
Alessandro Alla,
Marco Berardi and
Luca Saluzzi
Mathematics and Computers in Simulation (MATCOM), 2025, vol. 232, issue C, 261-275
Abstract:
We present an approach for the optimization of irrigation in a Richards’ equation framework. We introduce a proper cost functional, aimed at minimizing the amount of water provided by irrigation, at the same time maximizing the root water uptake, which is modeled by a sink term in the continuity equation. The control is acting on the boundary of the dynamics and due to the nature of the mathematical problem we use a State Dependent Riccati approach which provides suboptimal control in feedback form, applied to the system of ODEs resulting from the Richards’ equation semidiscretization in space. The problem is tested with existing hydraulic parameters, also considering proper root water uptake functions. The numerical simulations also consider the presence of noise in the model to further validate the use of a feedback control approach.
Keywords: Dynamic boundary control; State Dependent Riccati Equation; Richards’ equation; Irrigation models; Unsaturated flow equation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475424004920
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:232:y:2025:i:c:p:261-275
DOI: 10.1016/j.matcom.2024.12.020
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().